Ammonia gas sensors based on In2O3/PANI hetero-nanofibers operating at room temperature
نویسندگان
چکیده
Indium nitrate/polyvinyl pyrrolidone (In(NO3)3/PVP) composite nanofibers were synthesized via electrospinning, and then hollow structure indium oxide (In2O3) nanofibers were obtained through calcination with PVP as template material. In situ polymerization was used to prepare indium oxide/polyaniline (In2O3/PANI) composite nanofibers with different mass ratios of In2O3 to aniline. The structure and morphology of In(NO3)3/PVP, In2O3/PANI composite nanofibers and pure PANI were investigated by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and current-voltage (I-V) measurements. The gas sensing properties of these materials towards NH3 vapor (100 to 1000 ppm) were measured at room temperature. The results revealed that the gas sensing abilities of In2O3/PANI composite nanofibers were better than pure PANI. In addition, the mass ratio of In2O3 to aniline and the p-n heterostructure between In2O3 and PANI influences the sensing performance of the In2O3/PANI composite nanofibers. In this paper, In2O3/PANI composite nanofibers with a mass ratio of 1:2 exhibited the highest response values, excellent selectivity, good repeatability and reversibility.
منابع مشابه
Ammonia Sensing Behaviors of TiO2-PANI/PA6 Composite Nanofibers
Titanium dioxide-polyaniline/polyamide 6 (TiO(2)-PANI/PA6) composite nanofibers were prepared by in situ polymerization of aniline in the presence of PA6 nanofibers and a sputtering-deposition process with a high purity titanium sputtering target. TiO(2)-PANI/PA6 composite nanofibers and PANI/PA6 composite nanofibers were fabricated for ammonia gas sensing. The ammonia sensing behaviors of the ...
متن کاملElectrospinning Hetero-Nanofibers In2O3/SnO2 of Homotype Heterojunction with High Gas Sensing Activity
In₂O₃/SnO₂ composite hetero-nanofibers were synthesized by an electrospinning technique for detecting indoor volatile organic gases. The physical and chemical properties of In₂O₃/SnO₂ hetero-nanofibers were characterized and analyzed by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), Energy Dispersive X-Ray Spectroscopy (EDX), specific surface Brunauer-Emmett-Tell...
متن کاملEffect of CSA Concentration on the Ammonia Sensing Properties of CSA-Doped PA6/PANI Composite Nanofibers
Camphor sulfonic acid (CSA)-doped polyamide 6/polyaniline (PA6/PANI) composite nanofibers were fabricated using in situ polymerization of aniline under different CSA concentrations (0.02, 0.04, 0.06, 0.08 and 0.10 M) with electrospun PA6 nanofibers as templates. The structural, morphological and ammonia sensing properties of the prepared composite nanofibers were studied using scanning electron...
متن کاملElectrospun Polyaniline Fibers as Highly Sensitive Room Temperature Chemiresistive Sensors for Ammonia and Nitrogen Dioxide Gases
Electrospun polyaniline (PAni) fibers doped with different levels of (+)-camphor-10-sulfonic acid (HCSA) have been fabricated and evaluated as chemiresistive gas sensors. The experimental results, based on both sensitivity and response time, show that doped PAni fibers are excellent ammonia sensors and that undoped PAni fibers are excellent nitrogen dioxide sensors. The fibers exhibit changes i...
متن کاملIn2O3 Nanotower Hydrogen Gas Sensors Based on Both Schottky Junction and Thermoelectronic Emission
Indium oxide (In2O3) tower-shaped nanostructure gas sensors have been fabricated on Cr comb-shaped interdigitating electrodes with relatively narrower interspace of 1.5 μm using thermal evaporation of the mixed powders of In2O3 and active carbon. The Schottky contact between the In2O3 nanotower and the Cr comb-shaped interdigitating electrode forms the Cr/In2O3 nanotower Schottky diode, and the...
متن کامل